x
Bhubaneswar,भुवनेश्वर: भारतीय प्रौद्योगिकी संस्थान (IIT)-भुवनेश्वर ने मौसम अनुसंधान और पूर्वानुमान (WRF) मॉडल से आउटपुट को डीप लर्निंग (DL) मॉडल में एकीकृत करके एक हाइब्रिड तकनीक विकसित की है, जिसका उद्देश्य पूर्वानुमान सटीकता को बढ़ाना है, खास तौर पर पर्याप्त लीड टाइम के साथ भारी वर्षा की घटनाओं की भविष्यवाणी में सुधार करना, सोमवार को आधिकारिक सूत्रों ने कहा। अध्ययन ने वास्तविक समय के मौसम पूर्वानुमान को बेहतर बनाने में आर्टिफिशियल इंटेलिजेंस की क्षमता पर भी प्रकाश डाला, खास तौर पर भारतीय क्षेत्र के जटिल इलाकों में भारी वर्षा की घटनाओं के लिए। यह अध्ययन जून 2023 के दौरान असम के जटिल इलाकों (जो गंभीर बाढ़ के लिए अत्यधिक संवेदनशील हैं) और ओडिशा राज्य में किए गए, जहां कई तीव्र वर्षा वाले मानसून कम दबाव वाले सिस्टम के कारण भारी वर्षा की घटनाएं अत्यधिक गतिशील प्रकृति की होती हैं।
आधिकारिक सूत्रों ने कहा, "असम में, हाइब्रिड मॉडल 96 घंटे तक के लीड टाइम के साथ जिला स्तर पर पारंपरिक एनसेंबल मॉडल की तुलना में लगभग दोगुनी सटीकता प्रदर्शित करता है, जो इसके उल्लेखनीय प्रदर्शन को दर्शाता है। ये अभिनव अध्ययन पूर्वव्यापी मामलों का उपयोग करके किए गए हैं।" आईआईटी-भुवनेश्वर के शोधकर्ताओं ने एक अन्य महत्वपूर्ण अध्ययन के माध्यम से डीप लर्निंग तकनीकों का उपयोग करके वास्तविक समय में क्षेत्र में भारी वर्षा की घटनाओं का सटीक पूर्वानुमान लगाने में महत्वपूर्ण छलांग लगाई है। अध्ययन ने असम के जटिल भूभाग पर वास्तविक समय की स्थितियों के लिए नई हाइब्रिड तकनीक की मजबूती को प्रदर्शित किया।
आईईईई एक्सप्लोर में प्रकाशित 'असम में वास्तविक समय में भारी वर्षा की घटनाओं के लिए डीप लर्निंग का उपयोग करके पूर्वानुमान त्रुटि को कम करना' शीर्षक वाले अध्ययन से पता चला है कि डीएल को पारंपरिक डब्ल्यूआरएफ मॉडल के साथ एकीकृत करने से वास्तविक समय में भारी वर्षा की घटनाओं के लिए पूर्वानुमान सटीकता में नाटकीय रूप से सुधार होता है, जो असम जैसे बाढ़-ग्रस्त पहाड़ी क्षेत्र के लिए एक महत्वपूर्ण प्रगति है," सूत्रों ने कहा। 13 से 17 जून, 2023 के बीच, असम में भारी वर्षा के कारण भयंकर बाढ़ आई। डीएल मॉडल जिले के पैमाने पर वर्षा के स्थानिक वितरण और तीव्रता का अधिक सटीक अनुमान लगाने में सक्षम था। शोध ने वास्तविक समय में प्रारंभिक मौसम पूर्वानुमान बनाने के लिए डब्ल्यूआरएफ मॉडल का उपयोग किया, जिसे बाद में डीएल मॉडल का उपयोग करके परिष्कृत किया गया।
इस नई विधि के माध्यम से विशेषज्ञ अब वर्षा पैटर्न का अधिक विस्तृत विश्लेषण कर सकते हैं, जिसमें डेटा में जटिल स्थानिक निर्भरताओं को बेहतर ढंग से पकड़ने के लिए एक स्थानिक-ध्यान मॉड्यूल शामिल है। जैसा कि चर्चा की गई है, मॉडल को इसकी सटीकता में सुधार करने के लिए कई समूहों के आउटपुट के साथ-साथ भारत मौसम विज्ञान विभाग (IMD) के अवलोकनों से पिछले भारी वर्षा की घटनाओं के डेटा का उपयोग करके प्रशिक्षित किया गया था। आधिकारिक सूत्रों ने कहा, "प्राकृतिक आपदाओं और सार्वजनिक सुरक्षा के प्रभावों को कम करने के लिए यह प्रगति महत्वपूर्ण है। इसके अतिरिक्त, ये अग्रणी कार्य भारत के पश्चिमी हिमालय और पश्चिमी घाट क्षेत्रों जैसे अन्य जटिल स्थलाकृतिक भूभाग क्षेत्रों के लिए अनुरूप हाइब्रिड मॉडल बनाने में एक मार्गदर्शक प्रकाश के रूप में भी काम करेंगे।"
Tagsमौसम पूर्वानुमानAI का उपयोगहाइब्रिड तकनीक विकसित कीWeather forecastinguse of AIdeveloped hybrid technologyजनता से रिश्ता न्यूज़जनता से रिश्ताआज की ताजा न्यूज़हिंन्दी न्यूज़भारत न्यूज़खबरों का सिलसिलाआज की ब्रेंकिग न्यूज़आज की बड़ी खबरमिड डे अख़बारहिंन्दी समाचारJanta Se Rishta NewsJanta Se RishtaToday's Latest NewsHindi NewsBharat NewsSeries of NewsToday's Breaking NewsToday's Big NewsMid Day Newspaper
Payal
Next Story